Healthcare Data Exchange Framework (HDEF)
scalable economy of secure information and services

A pilot project executed within Research Collaboration Agreement between US FDA and IBM Watson Health Group

HDEF pronounces as "hā-def"
What should a good story have:

- **Challenge:** what is the problem we are trying to solve?
- **Setup:** what do we have now?
- **Development:** what actions did we take?
- **Resolution:** how did we solve the problem?
- **Poetic culmination:** what did we learn?
- **Inspiring afterthoughts:** what will be next?
- **Great title:** “...”
Challenges: age of data explosion.

• **We all know FDA mission:** in brief, we are here to ensure safety and efficacy of medical products (before, during and after the product is in the market).

• **We need data:** preclinical, clinical, EMR, nutrition, wellness, pre- and post-market, statistical, genomics, metabolomics, adverse events, patient level, summary ... you name it.

• **Lack of standards:** not harmonized data and processes, ad hoc solutions are found on case by case, insufficient provenance.

• **Infrastructure needed:** lacking network throughput, always not enough compute and storage power, lack of expertise in new computational methodologies.

• **Inefficiencies:** administrative, legal barriers, and some “19th-century-cool” legacy technologies driving document and data flows.

• **Security keywords:** FedEx Truck, printed paper documents OCR, emails, unencrypted hard-drives, anonymization is considered security technology.

• **Ownership and access:** limited and cumbersome access to data through complicated DUA, IRB approvals, legal agreements, etc.

After all of this: our FDA scientists deserve a medal for doing this amazing work.
Challenges: current processes

- **slow**: takes weeks to receive the data due to inefficient document flow process, thin network pipes between EDRs and FDA campus, and arcane delivery methods

- **non-secure**: delivery is performed using insecure network packets, unencrypted hard drives and paper documents

- **week provenance**: tracking of data provenance is by accountability and trust not by design

- **not scalable**: moving large -omics data is challenging, frequently patched with *ad hoc* solutions. It takes more time to get -omics data than to analyze.
Challenges:

- Lack of incentives
- Lack of funding
- Fear of change
- Fear of burden
Setup: age of technology explosion.

• **Modern networking:** the world is going 100GB (100 times faster) with its Internet-2s, fiber optic channels, parallel transfer procedures, using modern https, sftp and other protocols.

• **Modern platforms:** high performance storage, archival and computing on massive, distributed, parallel, cloud computing environments such as **HIVE**, Galaxy, Seven Bridges, Nexus, many others …

• **E-doc:** tens if not hundreds of solutions for secure document workflows, electronic signature systems, processual and **smart contract** systems, etc …

• **Security:** novel paradigms of encryption, **blockchain**, distributed data lakes, private/public key systems, **hyper-ledger**, etc …

• **Bioinformatics:** innovative evolutionary algorithmics, artificial intelligence, stochastic modeling, natural language processing, HIVE algebraic attractors, modeling and simulations, data standardization protocols, **honeycomb typing**, data janitorial services …

A perfect setup: we have the Lego pieces, all we need is the builder.
Setup technology explosion.

- **Modern networking:** the world is going 100GB (100 times faster) with its Internet-2s, fiber optic channels, parallel transfer procedures, using modern https, sftp and other protocols.

- **Modern platforms:** high performance storage, archival and computing on massive, distributed, parallel, cloud computing environments such as HIVE, Galaxy, Seven Bridges, Nexus, many others …

- **E-doc:** tens if not hundreds of solutions for secure document workflows, electronic signature systems, processual and **smart contract** systems, etc …

- **Security:** novel paradigms of encryption, **blockchain**, distributed data lakes, private/public key systems, **hyper-ledger**, etc …

- **Bioinformatics:** innovative evolutionary algorithmics, artificial intelligence, stochastic modeling, natural language processing, HIVE algebraic attractors, modeling and simulations, data standardization protocols, honeycomb typing, data janitorial services …

A perfect setup: we have the Lego pieces, all we need is the builder.
HDEF: what is required

- **security**: to ensure protection of private, proprietary data
- **speed of transfer**: to ensure fast and efficient on demand transfer
- **ease of electronic document flow**: to facilitate administrative and legal processes
- **transaction auditability**: to enable tracing and logging every single transaction
- **horizontal scalability**: to enable big, continuous, heterogeneous data
- **vertical scalability**: to enable expansion of features with new data science services
Big picture

- **individuals** as owners of their wellness data
- **insurance provider**
- **hospital owner of legacy data**
- **clinical trial in hospital setting**

data aggregator

hospital

patient data owner

pharma data owner

databank

EMR bank

omics bank

HDEF blockchain

FDA reviewer

consumers

1. **#1**
2. **#2**
3. **#3**
4. **#4**
5. **#5**

SEM

deposition

search

request

contract negotiation

permission validation

download

research labs

insurance provider

pharma
Mold arthroplasty Hip Joint
Resurfacing Hip Joint
Osteotomy Hip

patient 1
CT01-134711 21 White female
Mold arthroplasty Hip

patient 2
CT01-112358 32 Asian male
Resurfacing Hip Joint

...
...
...
...
...
...

patient N
CT01-31415 White female
Osteotomy Hip

USUBJID age race gender location
procedure

Demographics domain

Procedure domain

DM PR EX AE CE PE

Precision medicine lets us treat patients based on their genetic makeup: one chromosome and a single gene at a time. For example, a gene for a good response to a cancer drug like Atezolizumab might be present in a patient’s genetic makeup. However, a blue eye gene might indicate that a car-T based cell cancer immunotherapy is not going to work for this patient. This patient might also have a prevalence for Alzheimer potential patient for Mediterranean disease: autoimmune reaction potential after 40. It is advised to avoid metal on metal hip arthroplasty devices. Tens of thousands of features to be extracted about every patient: predictive, prognostic, diagnostic. For instance, Huntington disease patient might be a carrier of rare genetic trait.
Resolution: it works

- **fast**: takes minutes to receive the data through parallel concurrent network pipes using modern protocols of download, DUA contracts, electronic signatures

- **secure**: uses novel data & process delocalization paradigms from HIVE and blockchain technology in order to ensure unbreakable, uninterpretable, heuristic distribution of information

- **provenance**: tracking of data provenance is by design enforced by policy, auditable and traceable

- **scalable**: type and size agnostic peta-scale platform optimized for large data storage, transformation, and analysis.

- **cloud compatible**: may extend to FedRAMP approved cloud and compliment the hardware with end-to-end solution
Resolution:

- technology works – welcome to 21st century
- platform is deployed and is being expanded, current participants: FDA, IBM, GWU, Harvard, Cornell, small businesses
- we can move any type of data and practically any size of data, we can move and host not just data, but processes also
- and we did it based on open source codebase: anyone can participate
- we can do more with this - in-silico, virtual cohort, pragmatic and continuous trials, harmonization, standardization, data janitorial and compounding services, data brokership and derivation services
- roundtable on HDEF is to be held this Oct 26 with a large conference and release to follow up early next year
Poetic culmination: what else we can do?

- Patient and advocacy services
- Content enriched data and patient search
- Low quality data
- Data janitorial services
- Clean data
- Data transformation services
- EMR databank services
- Big data bank services
- Data registries
- Data brokerage services
- Data analytics services
- Consumer
Inspiring afterthoughts?

- liberation of patient data through patient ownership of data
- enabling legacy data reuse and value recovery
- optimization and then transformation of the regulatory review process entirely
- direct patient to registry, patient to doctor, patient to scientist relations
- ...
- the next bullets are limited only by your imagination
- ...
- ...